
22


Abstract—In the introductory part, this paper

defines the general environment for this research
and defines the terms of interest. Then we define
the research problem: How to implement a system
which clears the cached content from the
production web sites. The essence of the
proposed solution is presented in the part three:
The main part of the system, CacheBot, consists
of two multithreaded applications, called Hard
Daemon and Soft Daemon, which are in charge of
actually deleting or updating the contents on the
web servers. The fourth part defines advantages
that we made compared to an existing solution, as
well as the conclusion.

1. INTRODUCTION

HE Dow Jones Cache Clearing System is
responsible for clearing the cached content

associated with pages, sections and collections
on the production sites (WSJ.com, Barrons.com).
Content is cached in order to improve response
times and resource utilization when serving pages
requested by browsers. However, as a news site,
it is important that the content is as current as
possible. In order to achieve the optimal trade off
on how often to clear cached content so as to
maximize response times and conserve
resources without unduly compromising the
currency of information on the pages, complex
business rules have been developed and
implemented to dictate when, how often and in
what manner to clear cached content.

2. PROBLEM STATEMENT

This part describes requirements and
expectations established for this project.
Required features were to make Hard Clear
Cache – part of the system that is in charge for
removing the files immediately; Soft Clear Cache
– part of the system that replaces file with a newly
generated file; Flexible configuration of URLs for
soft and hard clear cache; guaranteed delivery of
Cache Clearing. Any cache clearing requests
should never become lost. The system had to be
able to resubmit failed requests based on
configurable parameters or properly log any
persistent problems. System also has to be able

Manuscript received July, 2006. This work was supported in part
by the Dow Jones Company.

Babovic Zoran, Jovic Darko, Cakarevic Vladimir, Milosavljevic
Ivan, Stevanovic Marija, Minic Predrag, and Milutinovic Veljko are
with Faculty of Electrical Engineering, University of Belgrade,
Serbia.

to work in a number of abnormal conditions, to
eliminate all duplicate cache-clearing requests
from the message queue (as we have many of
duplicate requests).

All of these requirements had to be designed in
a simple robust way that emphasizes reliability,
easy maintenance and high performance over
flexibility and abundance of features. [1]

3. PROPOSED SOLUTION

In order to clear cached content, the Cache
Clearing System must be able to locate the exact
content to be cleared. Content is identified by its
content ID which is then resolved to one or more
URL paths and file names. It is this URL path and
file name that are cached on disk and used to
serve all subsequent requests from user browser
sessions. Once the Cache Clearing System
determines that a particular cached content item
is to be cleared (i.e., an editor has published an
updated version of the content), it will either:

-Delete the cached URL path(s) and file
name(s) associated with the content item from
the disk. The next time a user requests this
content item via a browser session, the absence
of that URL on the disk will cause the Cache
Clearing System to retrieve a fresh copy of the
content from the one of the production rails, and
generate a new URL path and file name on the
production rail on which the content was originally
requested. This method is referred to as Hard
Cache Clearing.

-Proactively obtain a fresh copy of the content
from the one of the production rails, generate a
new URL path and file name and distribute that
URL to all production rails. This method is
referred to as Soft Cache Clearing.

In Figure 1 we can see the architecture of the
Cache Clearing System. CacheBot is the main
part of the system, and consists of two
multithreaded applications, [2] called Hard
Daemon and Soft Daemon, which are in charge
of actually deleting or updating the contents on
the web servers. Requests for Hard Clearing are
inserted into CLEAR_CACHE_QUEUE table by
CacheManager and read periodically by the Hard
Daemon, while requests for soft clearing are
defined in SOFT_CLEAR_CACHE table and read
periodically by the Soft Daemon.

Web servers are grouped to serve requests
from browsers faster. These groups are called
Elementary Targets (or just Targets), and each
web server in the target is called Rail. Every rail is

Cache Clearing System
Babovic, Zoran; Jovic, Darko; Cakarevic, Vladimir; Milosavljevic, Ivan; Stevanovic, Marija;

Minic, Predrag; and Milutinovic, Veljko

T

23

defined by the unique name and the URL.
Elementary targets can also be grouped to form
higher-level targets.

Figure 1: Cache Clearing System Architecture

Every request for cache clearing has
corresponding target, which means that it needs
to be executed on all rails belonging to the
specified target. There are exceptions to this rule:
if request has a target of higher level assigned
and one or more elementary targets which could
be soft cleared.

Every Apache web server contains mod_put
plug-in, which makes possible to delete or update
web content from the server with HTTP PUT and
DELETE requests. Hard Daemon uses only
HTTP DELETE requests for clearing the content,
while Soft Daemon uses both PUT and DELETE
requests for updating the content on the web
server.

In Figure 1 is also shown a load balancer,
which Soft Daemon targets to generate a new
content that will be delivered to required rails.

3.1 Hard Cache Clearing

The Hard Clear Cache daemon provides the
following functionality:

1. Fetches requests for Hard Cache Clearing
from CLEAR_CACHE_QUEUE table,

2. Eliminates duplicate requests if they occur,

3. Checks the syntax of requests to ensure
that they are well formed and valid,

4. Resolves partial URLs from requests by
rules defined in PATH_MAP table,

5. Eliminates duplicate URLs which may
occur during resolution phase,

6. Deletes contents from the appropriate rails
by sending HTTP DELETE requests,

7. Deletes processed requests from
CLEAR_CACHE_QUEUE table.

Figure 2: Hard Clearing Daemon Architecture

Hard Daemon fetches requests from the
CLEAR_CACHE_QUEUE table periodically, with
the configurable time interval. This is done by the
Queue Manager Thread. If some requests are
fetched from the table, Hard Daemon does not
wait for the next time interval, but reads
immediately from the database table in case that
there are new requests available. If there are no
requests in the table, Hard Daemon waits for the
next time interval to check the
CLEAR_CACHE_QUEUE for new requests.
Duplicate requests (requests which have the
same content id, content type and target) will not
be fetched, but will be deleted on original request
completion. For each fetched request, Hard
Cache Clearing Thread creates object called
Hard Item, which encapsulates request data
(URL, target…). After requests are fetched,
partial URLs are resolved based on the request’s
content type and target, which are paired with
path and extension fields from the PATH_MAP
table. One partial URL can be resolved to several
resolved URLs, which are generated by
concatenating path, content id and extension. In
this phase it is possible that some partial URLs

24

are resolved to same URLs. These duplicates are
also eliminated by the CacheBot. URL resolving
is done by the URL Completer component.

After URL completing, Hard Item with
completed URLs is passed to Request
Dispatcher. It uses Hard Item Progress Manager
for determining on which rails request should be
executed and excluding URLs which are
configured for Soft Cache Clearing (Pattern
Excluder). Hard Item Progress Manager is also
responsible for tracking of request execution and
handling of duplicates of currently processing
requests.

After Item processing in the Hard Item
Progress Manager, for every resolved URL an
object called URL Request is created and
assigned to Hard Item. Request Dispatcher takes
list of URL Requests from the Item and
dispatches them to appropriate rails (i.e. inserts
them in corresponding delivery queues).

There is a configurable number of Rail Workers
(running in separate threads) dedicated to each
rail. Those workers take URL Requests from the
Delivery Queue and execute them on the
appropriate rails. Rail Workers can handle
uploading (used in Soft Cache Clearing) and
deleting of contents from the rails by using HTTP
PUT and DELETE requests. In case of Hard
Cache Clearing only deleting is performed.
Depending on the success of request execution,
Rail Workers notify Request Dispatcher and Hard
Item Progress Manager of the execution status.

If rail worker detects that rail is down, it notifies
Request Dispatcher which creates rail status report
for updating RAIL_STATUS table.

Status of the rail is kept in the RAIL_STATUS
table, and there are two possible states of the rail:
UP and DOWN. Internally, CacheBot has two
more states which are not stored in the
RAIL_STATUS table, but only logged into a log
file. These states are: SLOW and DELAYED.
When the rail is DOWN, requests are not sent to
it. Rail can be set to DOWN state by either
CacheBot or administrator. CacheBot sets rail
state to DOWN when it determines that server is
not accessible (gets timeout during connection
attempt), while administrator just changes the
value in the RAIL_STATUS table for particular
rail. On the other hand, rail can be set to UP only
by administrator, by changing the state to UP in
the RAIL_STATUS table. Rail statuses are
periodically read by the Server Status Refresher
DB Task which then updates the rail statuses in
the CacheBot governed by the following rules:

- The state of the rail will be changed to DOWN
if the rail state is not already DOWN and the time
of last change (recorded in the CacheBot) is
before than the change time stored in the table.

- The state of the rail will be changed to UP if
the state is DOWN and the stored time of the last
change is before the change time from the table.

SLOW state represents the situation when the
average execution time of the configurable

number of last requests on particular rail is
greater than the configurable threshold.

DELAYED state represents the situation when
number of requests waiting for execution in the
queue for particular rail is greater by the
configurable threshold than number of requests in
the queue for the rail of the same elementary
target which has the minimal number of requests
in it.

All database reports are inserted into the
Status Reports Queue and there is a DB Status
Reporting Thread which will take tasks from the
queue and execute them.

3.2 Soft Cache Clearing
The Soft Cache Clearing Daemon provides the

following functionality:

1. Fetches requests for Soft Cache Clearing
from SOFT_CLEAR_CACHE table, but
only if they have been updated since the
time of the last fetching. This occurs at
regular time intervals,

2. Checks the syntax of requests to ensure
that they are well formed and valid,

3. Communicates with the Apache Web
server (via HTTP routed through the Load
Balancer) in order to force the generation
of an updated content file on a single
production rail. New content is retrieved by
inserting timestamp in the URL for which
new content is needed and sending HTTP
request with the new URL to the load
balancer,

4. Uploads updated content on the
appropriate rails via HTTP PUT requests,

5. Deletes generated page (with a timestamp
added) from the rails via HTTP DELETE
request.

In Figure 3 we can see the internal architecture
of the Soft Daemon. The architecture is slightly
different from the Hard Daemon architecture. Rail
Worker Threads, Request Dispatcher, DB Status
Reporting Thread, Rail Status Refresher Task,
and System Manager, function in the same way
as described in Hard Cache Clearing section.
New elements are Soft Cache Clearing Thread,
Soft Queue Manager Thread, and Soft Item
Progress Manager. Soft Daemon fetches URLs
for Soft Clearing from the
SOFT_CLEAR_CACHE table by Soft Queue
Manager Thread, but only if they have been
updated since the time of the last fetching. This is
checked by including PAGE_PUBLISH_INFO
table in the fetch query.

The data needed for page update is stored in
an object called Soft Item. Fetching is done
periodically with the configurable time interval.
Soft Queue Manager Thread behaves in the
same way as in Hard Daemon, but reads cache
clearing requests from different database tables.

25

Figure 1: Soft Clearing Daemon Architecture

Page Generation Task is created for each Soft

Item. This task executes GET HTTP request
through Load Balancer and saves received page.
It calls Request Dispatcher to dispatch generated
page to rails. If an error occurs during page
generation, the corresponding
PAGE_PUBLISH_INFO table record will be
updated so the page updating will be tried in the
next iteration.

In order to get a new content for specific URL,
Page Generation Task inserts a timestamp into
the URL and targets Load Balancer which will
recognize this type of URL and will generate a
new page. Timestamp is in a form
yyyyMMddHHmmssSSS and is inserted before
the file extension.

After the page has been created, it is stored in
the Soft Item object and passed to Request
Dispatcher for dispatching to required rails.
Request Dispatcher then calls Soft Item Progress
Manager to eliminate possible duplicates and
inserts page update request to all rails. Request
is considered to be a duplicate if the request with
the same URL and target is currently waiting to
be processed on one or more rails. In case that
duplicate has been detected, content of the
original request is replaced with the new one, so
rail will receive the latest version of the generated
page and the old content will be deleted. Soft
Daemon can store generated page content in a

file or in a memory structure.
Each Rail Worker Thread will update page on

its rail via HTTP PUT request. When some page
is updated, Rail Worker deletes temporary
generated page(s) from the rail, if there is any, via
HTTP DELETE request with a URL which
contains -*.* (delete extension) at the end. This
will delete the generated page with a timestamp
in a URL.

Request Dispatcher behaves in the same way
as in Hard Daemon. This means that rail states
and their behavior is the same as described in
Hard Cache Clearing section.

All database writes are done through Status
Reports Queue by DB Status Reporting Thread
as in Hard Clearing.

The System Manager works in the same
manner as in Hard Daemon.

4. CONCLUSION

In this part we will summarize facts that we
gained in this project and also, we will make a
comparison with one existing solution, but
currently used system will not be described now.

Main problem with the current solution is that
each thread has to wait as long as the last
working server finishes with certain page. In our
solution this problem is resolved by independent
threads. This means that servers do not wait
each other, which, obviously speed up the whole
system. Weakness of this solution is bigger
memory consumption, which is being
recompensed with the fact that there is no
possibility of overhead situations (overhead in the
current solution is the thread information on which
server it has to be executed).

 In the current solution of the problem, pages
are being updated all at the time, with a certain
time stamp. The page is updated only if it is
changed since the last updated time. This means
that the superfluously updating is being
eliminated.

Page tracking is optimized; primarily by
decreasing the data base utilization (one table is
even excluded from the data base used for our
solution).

Servers are being set to UP and DOWN state
only by the administrator, which implies that
pages are being sent even to the DOWN rails, in
case that administrator did not notice and change
server state changes. Our solution gives much
more reliable system. Beside administrator, which
works in the same way, the server itself sends the
message to the data base so it can be updated
with the new server state. This change is now
known through the whole system and the pages
will not be sent to these servers.

Having in mind those advantages that we
gained in this project, we think that all the
requirements specified in the problem statement
are satisfied, but also, some extra advantages
are scored.

26

REFERENCES

[1] Horton, I., “Beginning Java 2,” Wrox Press Ltd,
Birmingham, 2000.

[2] Oaks, S., Wong, H., “Java Threads 2nd Edition,” O’Relly
& Associates, January, 1999.

